Correlated Concept based Topic Updation Model for Dynamic Corpora
نویسندگان
چکیده
منابع مشابه
Correlated Concept based Topic Updation Model for Dynamic Corpora
A rapid growth of documents available on the Internet, digital libraries, medical documents, news wires and other scientific document corpuses has motivated the researchers to propose many text mining techniques that help users to quickly retrieve trace and summarize the information in an effective way. Topic detection is one such technique which discovers precise, meaningful and concise labels...
متن کاملConcept-Based Topic Model Improvement
We propose a system which employs conceptual knowledge to improve topic models by removing unrelated words from the simplified topic description. We use WordNet to detect which topical words are not conceptually similar to the others and then test our assumptions against human judgment. Results obtained on two different corpora in different test conditions show that the words detected as unrela...
متن کاملCorrelated Topic Model for Web Services Ranking
With the increasing number of published Web services providing similar functionalities, it’s very tedious for a service consumer to make decision to select the appropriate one according to her/his needs. In this paper, we explore several probabilistic topic models: Probabilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA) and Correlated Topic Model (CTM) to extract latent...
متن کاملA Revised Inference for Correlated Topic Model
In this paper, we provide a revised inference for correlated topic model (CTM) [3]. CTM is proposed by Blei et al. for modeling correlations among latent topics more expressively than latent Dirichlet allocation (LDA) [2] and has been attracting attention of researchers. However, we have found that the variational inference of the original paper is unstable due to almost-singularity of the cova...
متن کاملTopic Based Analysis of Text Corpora
We present a framework that combines machine learnt classifiers and taxonomies of topics to enable a more conceptual analysis of a corpus than can be accomplished using Vector Space Models and Latent Dirichlet Allocation based topic models which represent documents purely in terms of words. Given a corpus and a taxonomy of topics, we learn a classifier per topic and annotate each document with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2014
ISSN: 0975-8887
DOI: 10.5120/15664-3467